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ABSTRACT
Resource leaks are a common and elusive source of bugs that can re-

sult in crashes and security vulnerabilities. The most effective tech-

nique to identify such leaks during development is static analysis.

However, empirical studies show that in addition to leak warnings,

developers often need help in the form of automated fix sugges-

tions to correctly repair such leaks. The only existing tool that can

suggest resource-leak fixes is the general-purpose tool Footpatch.

Footpatch, however, performs poorly at this task; it generates fixes

for only 6% of the leaks, out of which only 27% are correct.

In this paper, we introduce RLFixer, a specialized repair tool

that generates high-quality fixes for resource leaks identified by

any resource-leak detector. A major challenge for RLFixer is that

the most general version of the resource-leak repair problem is at

least as hard as compile-time object deallocation, a well-known

hard problem for compilers. RLFixer tackles this issue by separating

the resource-leaks that are infeasible for a compile-time tool to fix

from those that are feasible to fix. RLFixer achieves this separation

by using a new data-flow analysis of resource objects to classify

how they escape the context of their methods. The same analysis

also enables RLFixer to generate correct repairs for the feasible-

to-fix leaks. RLFixer is demand-driven and hence only analyzes

statements relevant to the leak, thereby keeping overhead low.

We evaluated RLFixer by applying it to warnings generated by

five popular Java resource-leak detectors. We show that, on average,

RLFixer generates repairs for 66% of their warnings, out of which

95% are correct. It has an average repair time of 14 seconds.

CCS CONCEPTS
• Software and its engineering → Automated static analysis;
Software maintenance tools.

KEYWORDS
Static Analysis, Resource Leaks, Automated Repair

ACM Reference Format:
Akshay Utture and Jens Palsberg. 2023. From Leaks to Fixes: Automated

Repairs for Resource Leak Warnings. In Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering (ESEC/FSE ’23), December 3–9, 2023, San

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0327-0/23/12.

https://doi.org/10.1145/3611643.3616267

Francisco, CA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.

1145/3611643.3616267

1 INTRODUCTION
Motivation. Most programs use resources such as files, sockets

and database connections. Resource leaks are a common bug intro-

duced unintentionally by programmers, which can result in security

vulnerabilities [6] and severe failures [24]. Resource leaks are elu-

sive because they only cause crashes when many resources leak

and the OS runs out of that resource-type; this typically does not

happen during testing. An effective approach for identifying these

resource leaks during development is static analysis [32]. Today,

developers can choose from several open-source static-analysis

tools that perform resource-leak detection [1, 3, 5, 14, 32], many of

which provide accurate warnings.

While static analyzers can detect resource-leaks, users also need

tool-support to fix these errors. For example, Christakis and Bird’s

empirical study [19] shows that a lack of suggested fixes is one of the

top pain points reported by static analysis users. Other developer

studies [20, 31, 53] also report very similar findings. Hence, what

we need is a tool to fix resource-leaks.

Existing repair tools. Since there are currently no specialized tools
for resource-leak fixing, one could try using general-purpose repair
tools [8, 15, 28, 29, 33–35, 39, 40, 45, 46, 49, 51, 62, 65, 67], which
work on a wide variety of errors. These tools generate candidate

patches using a variety of techniques, but they all validate a patch

by checking if it passes the previously failing test case. Resource

leaks, however, do not show up during tests, and hence cannot be

fixed by such tools. Footpatch [61], one of the only general-purpose

tools that does not rely on tests, is the current best tool for fixing

resource leaks. However, it suffers from low-quality fixes for Java

resource-leaks; it suggests fixes for only 6% of the leaks, out of

which only 27% are correct.

Achieving a perfect fixable-rate (percentage of warnings for

which a fix was suggested) and fix-correctness (percentage of cor-
rect fixes out of the suggested fixes) for Java resource-leaks is a

lofty goal. The problem is at least as hard as compile-time object

deallocation [17, 26] (i.e. replacing Java’s runtime garbage collec-

tor with static deallocation), a known hard problem for compilers.

Furthermore, in this repair problem, some corner cases involving

loops or aliasing also reduce to undecidable problems. Hence, there

will always be some resource-leaks that are infeasible to fix for a

compile time-tool. However, we show that by separating the leaks

that are infeasible to fix from those that are feasible to fix, it is pos-

sible to have better repairability than Footpatch in both fixable-rate

and fix-correctness.

https://doi.org/10.1145/3611643.3616267
https://doi.org/10.1145/3611643.3616267
https://doi.org/10.1145/3611643.3616267
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Figure 1: Overview of the RLFixer workflow

Our Approach. In this paper, we introduce RLFixer, a specialized
repair tool for resource leaks that generates high-quality fixes. Fig. 1

gives an overview of its workflow. The warnings computed by an

existing black-box resource-leak detector are first parsed to extract

the location where the resource was created. Next, the resource
alias identification step identifies pairs of resource objects that use

the same underlying system resource. The third step tracks the

data-flow of the resource object using a new demand-driven static

analysis called a resource escape analysis. This analysis serves two
purposes: it identifies leaks that are infeasible to fix, and it helps

pick the correct repair-template for the feasible-to-fix ones. Finally,

using repairs template, the last stage generates the correct fix.

In addition to generating correct fixes, we designed RLFixer to
be fast because it will typically accompany static analysis warn-

ings in IDEs, which are time sensitive environments. RLFixer’s
demand-driven design enables it to analyze only those statements

relevant to the resource leak. It takes, on average, only 1 seconds

per program, excluding the 13 seconds for setting up the call-graph,

class-hierarchy, etc.

We evaluated RLFixer by applying it to the warnings from five

popular Java resource-leak detectors: Infer [14], PMD [1], Checker-

Framework [32] , Codeguru [5], and Spotbugs [3], each of which is

run on programs from the NJR-1 dataset [58].

Our Contributions. We begin with an example of RLFixer fixing

a resource leak (Section 2), and then we detail our contributions:

• We introduce a new static analysis, resource escape analysis,
which helps identify leaks that are infeasible to fix, as well

as pick the repair template for feasible ones (Section 3).

• We design and implement RLFixer, a specialized repair tool

for resource-leaks that is based on the resource escape analy-
sis, and can repair leaks from multiple leak detectors (Sec-

tion 4).

• We show, experimentally, that RLFixer generates high-quality
fixes with low overhead for five popular Java resource-leak

detectors. Out of 2205 resource leaks detected in NJR-1, it

generates, on average, fixes for 66% of the leaks, out of which

an estimated 95% are correct (Section 6). RLFixer outperforms

the Footpatch baseline, which generates fixes for only 6% of

the leaks, out of which only 27% are correct.

1 void foo ( F i l e a ) throws IOExcep t i on {

2 F i l e R e a d e r f r = null ;
+ try {

3 f r = new F i l e R e a d e r ( a ) ;

4 bar ( f r ) ;

5 in t da t a = f r . r ead ( ) ;

+ } f ina l l y {

+ try {

+ f r . c l o s e ( ) ;

+ } catch ( Excep t i on e ) {

+ e . p r i n t S t a c kT r a c e ( ) ;

+ }

+ }

6 }

7 void bar ( F i l e R e a d e r f ) {

8 Bu f f e r edReade r r = null ;
9 try {

10 r = new Bu f f e r edReade r ( f ) ;

11 System . out . p r i n t l n ( r . r e a d l i n e ( ) ) ;

12 } catch ( IOExcep t i on e ) { }

13 }

Figure 2: Example of a resource leak fixed by RLFixer

We end with a discussion of related work (Section 7) and our con-

clusion (Section 8).

2 EXAMPLES
This section shows two simplified examples of how the five resource

leak detectors report leaks, and how RLFixer goes about repairing
them. It highlights the need for suggesting fixes for resource-leaks,

as well as some of the challenges in generating a correct fix.

Fig. 2 shows a simplified Java code snippet from one of the NJR

benchmarks. It has two methods, each with one resource object.

First, let us look at the method foo. foo creates a FileReader re-
source (line 3), which gets passed in to the bar method (line 4).

Note that foo continues using the FileReader on line 5 after the

bar function returns. The foo method also declares that it poten-

tially throws an IOException. This declaration is required by the

Java-compiler’s type and effect system when a resource’s potential

exception is not handled in a try-catch block. The lines highlighted

in green constitute the fix suggested by RLFixer ; they have not been
added to the code yet.

Next, let’s focus on the method bar. It creates a BufferedReader
resource object with the FileReader parameter f as an argument

(line 10). Here, the BufferedReader is a wrapper resource that pro-
vides buffering functionality for the FileReader f. Hence we say
that the resource variables f and r are resource aliases. This means

that even though they point to different resource objects (f points to
a FileReader and r points to a BufferedReader), the underlying
system resource pointed to by those objects is the same. This im-

plies that closing one resource object closes all its resource aliases.

In this case, neither the BufferedReader nor the FileReader have
been closed, and hence we get a resource leak.

We now run five resource-leak detectors (Infer, PMD, Checker-

Framework, Codeguru, and Spotbugs) on this code, and Fig. 3 shows

the output given by each. PMD and Infer identify a resource leak

for the BufferedReader, whereas Checker-Framework identifies a

resource-leak for the FileReader. Codeguru and Spotbugs do not
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Tool Output
Infer Resource of type BufferedReader at line 10 is

not released after line 11

PMD Ensure that resources like this BufferedReader

object are closed after use (line 8)

Checker-

Framework

@MustCall method close may not have been

invoked on ‘fr’ or any of its aliases (line 3)

Codeguru N/A (Resource leak missed)

Spotbugs N/A (Resource leak missed)

Figure 3: Outputs for the five resource-leak detectors, when
given the code snippet from Fig. 2

report any resource leak. Even after getting one of these warning

messages, a developer is still several steps away from a correct fix.

We also run the baseline repair tool, Footpatch, on this file-handle

leak. Footpatch is tightly integrated with Infer, and relies on Infer’s

warning output for identifying fix locations. Footpatch first gen-

erates candidate patches by searching the code-base for program

fragments that close a file, and then validates the patches by check-

ing if Infer stops reporting the leak. In this case, Footpatch is unable

to generate any patch candidates for the warning. Furthermore,

even if Footpatch did hypothetically find a patch, it would apply the

patch at the location in Infer’s warning (after line 11). Closing the

BufferedReader after line 11, or anywhere in function bar, will
mean that the file pointed to by its resource-alias FileReader will
be closed before it is read on line 5. This fix is dangerous since it

introduces a new use-after-close error.

Finally, let us examine how RLFixer deals with the resource leak,

assuming the warning came from Infer (i.e. for line 10). RLFixer
starts off by performing a resource alias identification for the new

BufferedReader object (line 10). This analysis reveals that f is a
resource-alias. Next, RLFixer performs a resource escape analysis, a
static analysis that computes how the BufferedReader and any of

its aliases escapes the method. The two ways the resource escapes

the bar method are via the readline method call (line 11) and

via the parameter f. When a resource escapes via a parameter, we

cannot close the resource in the current method, since the resource

is still accessible after the method returns. Instead, we examine the

caller instruction on line 4, which is in themethod foo. Carrying out
the resource escape analysis for fr in foo shows that it only escapes

via method calls, and hence can be closed in the method foo itself.

RLFixer then picks the correct repair-template, and it suggests the

fix highlighted in green in Fig. 2. The repair-code correctly fixes the

leak without introducing new errors or modifying the semantics

of the original program. RLFixer computes the same fix for the

warnings given by PMD and Checker-Framework.

A Resource Leak that is Infeasible to fix. Fig. 4 shows an example of

a resource leak that may be infeasible to fix at compile time. RLFixer,
during its resource escape analysis, tracks the FileWriter resource

(line 4) through the call to the method store, and identifies that it

is assigned the field fw on line 9. Since this field is accessible as long

as its parent 𝐴 object is alive, we can only safely close this resource

when the𝐴 object is getting deallocated. This makes the problem at

least as hard as compile-time object deallocation [17, 26], a known

1 c l a s s A{

2 F i l eW r i t e r fw ;

3 void c r e a t e ( F i l e b ) throws IOExcep t i on {

4 F i l eW r i t e r f = new F i l eW r i t e r ( b ) ;

5 s t o r e ( f ) ;

6 }

7

8 void s t o r e ( F i l eW r i t e r a ) {

9 fw = a ; / ∗ R e s o u r c e e s c a p e s t o a f i e l d ∗ /
10 }

11 }

Figure 4: Example of a resource leak that is infeasible to fix

hard problem for compilers. Prior research has only managed to

statically deallocate some objects in the program [26], and the

hardness of this problem is the reason why Java uses a runtime

garbage collector. This is just one of the infeasible cases for resource-

leak repair; we discuss the full list of cases in Section 3.

There will always be resource-leaks that are too hard to fix

statically. RLFixer aims to identify and separate out the hard-to-fix

leaks like the one in Fig. 4, while correctly fixing the rest of the

resource-leaks, like the one in Fig. 2.

3 APPROACH
This section gives an overview of RLFixer’s approach to fixing

resource-leaks. Fig. 1 shows the four main components of RLFixer :
the warning parser, the resource alias identification, the resource
escape analysis, and the application of repair templates; we now

discuss each of these in detail.

3.1 Warning Parser
The first component parses the resource-leak detector’s warning

and extracts the source file and line number where the leaked

resource was created. Each resource-leak detector needs a separate

parser because each tool uses a different output format, but this

component is simple and small. On average, it takes only 15 lines

of Python code per new tool.

3.2 Resource Alias Identification
The second step for RLFixer is identifying resource aliases for the
leaked resource objects. This is an important step because amajority

of resource usage in Java involves resource aliasing.We have already

seen an example of resource aliasing in Fig. 2, where the FileReader
and BufferedReader objects pointed to the same OS resource. Prior

research [32, 57] has studied resource-aliasing from the point of

view of pruning false-positive resource-leak warnings. Here, we

study resource-aliasing from the point of view of generating correct

repairs. Below is the resource-aliasing definition that RLFixer uses.
(1) Variables 𝑥 and 𝑦 are resource-aliases if 𝑥 is a wrapper for 𝑦,

or 𝑦 is a wrapper for 𝑥 .

(2) Resource𝑊 constructed with the constructor 𝐶𝑊 is a wrap-

per for resource 𝑅 if:

(a) 𝑅 is passed as a parameter to 𝐶𝑊 , and

(b) 𝑅 is a must-alias of a field of𝑊 at the end of 𝐶𝑊 , and

(c) The must-alias field always gets closed in the close()
function of𝑊
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1 c l a s s WrapperType {

2 pr ivate ResourceType out ;

3 public WrapperType ( ResourceType w) {

4 out = w;

5 }

6 public c l o s e ( ) {

7 out . c l o s e ( ) ;

8 }

9 }

10 . .

11 {

12 / ∗ Re s ou r c e − l e a k r e p o r t e d h e r e ∗ /
13 x = new ResourceType ( " a . t x t " ) ;

14 y = new WrapperType ( x ) ;

15 }

Figure 5: Resource Alias Identification: checking if the Wrap-
perType object is a wrapper for the ResourceType object

(3) All pointer aliases are treated as resource-aliases.

This definition also serves as a specification for a static analysis,

which RLFixer implements to identify resource alias pairs. Let us

use the example from Fig. 5 to check if the variables 𝑥 and 𝑦 are

resource-aliases. The resource leak warning is reported for the

ResourceType object on line 13. The ResourceType cannot be a

wrapper for any other object because its constructor only takes

a string input, and this will never satisfy condition (2a). So let

us check the 3 conditions for the WrapperType to be a wrapper

for the ResourceType. We first perform a def-use analysis [52] of

𝑥 , which identifies all uses of 𝑥 . Since 𝑥 is used as a parameter

in the constructor for the WrapperType (line 14), condition (2a)

is satisfied. Next, for condition (2b), we check the WrapperType
constructor and its callees for an assignment of its parameter 𝑤

(or one of its aliases) to a field of the WrapperType. In this case we

have such an assignment (line 4) for the field, 𝑜𝑢𝑡 ; the condition is

satisfied. Analyzing the close function reveals that the resource

from the field𝑜𝑢𝑡 gets closed in it (line 7), and this satisfies condition

(2c). Thus, all three conditions are satisfied; the WrapperType and
ResourceType are resource-aliases. The final part of the definition

says that all pointer-aliases are resource-aliases. Pointer-aliases can

be found using a typical demand-driven pointer analysis [56].

We now know how to identify pairs of resource-aliases, but we

also need to consider resource-objects that are linked by multiple

layers of resource-wrapping. This is quite common in Java pro-

grams; a resource can be wrapped in up to four or five layers of

resource wrappers. We identify this linking by computing a transi-

tive closure over the resource-aliasing relationship.

3.3 Resource Escape Analysis
The third component, the resource escape analysis, computes all

the types of program constructs that the resource can escape to.

This analysis is used by RLFixer for two purposes: it helps separate

out the infeasible-to-fix leaks, and it helps compute repairs for the

feasible-to-fix leaks.

The resource escape analysis is carried out on the WALA IR [2]

because it is easier to write a data-flow analysis on WALA IR than

on Java source code. WALA is the static analysis framework used

by RLFixer, and the WALA IR is very close to Java bytecode.

Program : : (C , C , . . . C )

C : : <cname> Ext ImpDS { f i e l d s : { f ; . . f ; } methods : {M, . . ,M} }

M : : <mname>(𝑉1 , . . ,𝑉𝑛 ) { i n s t r u c t i o n s : { I ; . . I ; } }

I : : A r r ayS to r e | F i e l dWr i t e | Assgn | Ph iS tmt |

Re turnStmt | Invoke | F i e l dR e ad | Cond i t i ona lB r anch

| NewStmt | ArrayLoad

Ar r ayS to r e : : 𝑉𝑎𝑟𝑟 [𝑉𝑖𝑑𝑥 ] = 𝑉𝑟ℎ𝑠
F i e l dWr i t e : : 𝑉𝑙ℎ𝑠 . f = 𝑉𝑟ℎ𝑠
Assgn : : 𝑉𝑙ℎ𝑠 = 𝑉𝑟ℎ𝑠
PhiS tmt : : 𝑉𝑙ℎ𝑠 = phi (𝑉1 , . . ,𝑉𝑛 )

Re turnStmt : : return V

Invoke : : 𝑉𝑙ℎ𝑠 = 𝑉𝑟ℎ𝑠 . <mname>(𝑉1 , . . ,𝑉𝑛 )

F i e l dR e ad : : 𝑉𝑙ℎ𝑠 = 𝑉𝑟ℎ𝑠 . f

Cond i t i ona lB r anch : : i f 𝑉𝑏𝑜𝑜𝑙 goto < i n s t r − index >

NewStmt : : 𝑉𝑙ℎ𝑠 = new <cname>

ArrayLoad : : 𝑉𝑙ℎ𝑠 = 𝑉𝑎𝑟𝑟 [𝑉𝑖𝑑𝑥 ]

V : : <var −name>

Ext : : e x t end s <cname> | ' '

ImpDS : : implements <data − s t r u c t u r e − i n t e r f a c e > | ' '

Figure 6: Simplified grammar for the WALA IR

Escape type Resource has this escape type if it:
Field-Escape aliases with an instance field or static field

Data-Structure-

Escape

aliases with an element in an array or data-

structure.

Return-Escape gets returned by the method it is created in.

Parameter-

Escape

aliases with a formal parameter of the

method it is created in

Invoke-Escape is passed as an argument to an invoke state-

ment (i.e. method call)

Figure 7: The five escape mechanisms for a resource object

Fig. 6 gives a simplified grammar of the WALA IR. Most of the

grammar terms are common to most intermediate representations.

The PhiStmt is a special instruction in all SSA-based IRs to merge

values from a source-variable that appears on two different control-

flow paths. The ImpDS non-terminal specifies if the class implements

any of the data-structure interfaces (such as Map, Collections, etc.).

The list of instructions in the grammar show that there are five

program constructs to which a resource can escape from its method:

a field, a data-structure (an array or a data-structure class), a return

variable, a parameter, or an invoke (i.e. method-call).

We define five escape types corresponding to these five con-

structs: Field-Escape, Data-Structure-Escape, Return-Escape, Parameter-
Escape, Invoke-Escape. Fig. 7 describes what each escape type means.

A resource can have multiple escape types. By enumerating through

the instruction types in Fig. 6, we can see that the five escape types

exhaustively cover all the ways a resource can escape the method

it is created in.

Fig. 8 gives pseudo-code for the analysis. It is designed to be

demand-driven, and its output is the set of possible escape types

for the resource. The analysis procedure, whose name is shortened

to rea, takes two arguments: the resource variable whose escape

mechanisms need to be analyzed, and the method it is declared in.

𝑒𝑠𝑐𝑇𝑦𝑝𝑒𝑠 , the set of escape types, is initialized to the empty set in
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1: procedure rea(𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ,𝑚𝑒𝑡ℎ𝑜𝑑)

2: 𝑒𝑠𝑐𝑇𝑦𝑝𝑒𝑠 = ∅
3: for I in getUses(𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒) do
4: switch I.instructionType do
5: case ArrayStore:
6: 𝑒𝑠𝑐𝑇𝑦𝑝𝑒𝑠 ∋ Data-Structure

7: case FieldWrite:

8: 𝑒𝑠𝑐𝑇𝑦𝑝𝑒𝑠 ∋ Field

9: case Assgn:
10: 𝑒𝑠𝑐𝑇𝑦𝑝𝑒𝑠 ⊇ rea(Assgn.𝑉𝑙ℎ𝑠 ,𝑚𝑒𝑡ℎ𝑜𝑑)

11: case PhiStmt:

12: 𝑒𝑠𝑐𝑇𝑦𝑝𝑒𝑠 ⊇ rea(PhiStmt.𝑉𝑙ℎ𝑠 ,𝑚𝑒𝑡ℎ𝑜𝑑)

13: case ReturnStmt:

14: if 𝑚𝑒𝑡ℎ𝑜𝑑 == originalWarningMethod then
15: 𝑒𝑠𝑐𝑇𝑦𝑝𝑒𝑠 ∋ Return

16: end if
17: for 𝑐𝑎𝑙𝑙𝑒𝑟 in callers(𝑚𝑒𝑡ℎ𝑜𝑑) do
18: 𝑒𝑠𝑐𝑇𝑦𝑝𝑒𝑠 ⊇ rea(𝑐𝑎𝑙𝑙𝑒𝑟 .𝑉𝑙ℎ𝑠 , 𝑐𝑎𝑙𝑙𝑒𝑟 .method)

19: end for
20: case Invoke:
21: for M in invoke.targets do
22: if M.isDataStructureMethod() then
23: 𝑒𝑠𝑐𝑇𝑦𝑝𝑒𝑠 ∋ Data-Structure

24: else
25: 𝑒𝑠𝑐𝑇𝑦𝑝𝑒𝑠 ∋ Invoke

26: 𝑝 =M.matchingParam(𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒)

27: 𝑒𝑠𝑐𝑇𝑦𝑝𝑒𝑠 ⊇ rea(p, M)

28: end if
29: end for
30: case FieldRead: do nothing

31: case ConditionalBranch: do nothing

32: case NewStmt: do nothing

33: case ArrayLoad: do nothing

34: end for
35: if isParameter(𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒) then
36: if 𝑚𝑒𝑡ℎ𝑜𝑑 == originalWarningMethod then
37: 𝑒𝑠𝑐𝑇𝑦𝑝𝑒𝑠 ∋ Parameter

38: end if
39: for 𝑐𝑎𝑙𝑙𝑒𝑟 in callers(𝑚𝑒𝑡ℎ𝑜𝑑) do
40: 𝑝 = 𝑐𝑎𝑙𝑙𝑒𝑟 .matchingArgument(𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒)

41: 𝑒𝑠𝑐𝑇𝑦𝑝𝑒𝑠 ⊇ rea(p, 𝑐𝑎𝑙𝑙𝑒𝑟 .method)

42: end for
43: end if
44: return 𝑒𝑠𝑐𝑇𝑦𝑝𝑒𝑠

45: end procedure

Figure 8: Resource Escape Analysis (Name shortened to 𝑟𝑒𝑎)

the beginning. The bulk of the method is a for loop over the uses

of the resource variable.

For each use, RLFixer performs a case analysis based on the type

of the use instruction (line 4). The possible use instructions come

from the grammar in Fig. 6. If the use-instruction is an ArrayStore, it
follows that the resource object aliases with an array element, and

according to Fig. 7, this implies a Data-Structure Escape; we add this
to 𝑒𝑠𝑐𝑇𝑦𝑝𝑒𝑠 . Similarly, a FieldWrite implies a Field Escape. An Assgn
or PhiStmt requires us to recursively track the assigned variable;

hence we call rea on it. Being used in a ReturnStmt in the warning’s
original method implies that Return should be in 𝑒𝑠𝑐𝑇𝑦𝑝𝑒𝑠 . Addi-

tionally, since we need to track the returned variable in all callers,

we add the escape types of the callers’ call-sites to 𝑒𝑠𝑐𝑇𝑦𝑝𝑒𝑠 . If the

use-instruction is an Invoke (i.e. method call), we split it into two

sub-cases. If the method belongs to a data-structure class, we add

Data-Structure to 𝑒𝑠𝑐𝑇𝑦𝑝𝑒𝑠 . If not, we add Invoke to 𝑒𝑠𝑐𝑇𝑦𝑝𝑒𝑠 , and
track the escape types in the method call by recursively calling rea
on the matching argument in the invoke targets. We do not need

to do anything for the last four instruction types. A FieldRead does

not propagate any escape information from the resource variable

because only the field is read. ConditionalBranch, NewStmt, and
ArrayLoad do not even support the use of a resource variable.

In addition to checking for the uses of the resource variable, we

also need to check if it escapes to a parameter (line 35). If so, we

add Parameter to 𝑒𝑠𝑐𝑇𝑦𝑝𝑒𝑠 . Additionally, we recursively track the

escape types in the caller methods, by calling rea on the resource

variable’s matching argument in the caller methods (line 41).

Finally, the analysis returns 𝑒𝑠𝑐𝑇𝑦𝑝𝑒𝑠 , the aggregate set of escape

types for 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 . Since resource aliases point to the same

underlying resource, an escape type for one alias applies to all other

aliases. Hence, the resource escape analysis must be repeated for all

resource-aliases of 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 , and their escape types added

to 𝑒𝑠𝑐𝑇𝑦𝑝𝑒𝑠 .

3.4 Applying Repair Templates
The final step for RLFixer is generating repair code. The repair code
has the following specification: it should close the leak after the

last use of the resource, without introducing new errors (such as

a new leak, a use-after-close error, or a null pointer exception) or

modifying the semantics of the original program.

RLFixer uses the decision tree from Fig. 9 to pick the correct

repair strategy. If a resource escapes to a field or data-structure,

RLFixer marks it as infeasible to fix. If the resource does not escape

to a field or data-structure, but does escape to a return or parameter,

RLFixer creates dummy leak warnings at the caller methods, and

closes the leak there. If it does not have any of these four escape

types, we can close the resource in the same method as it was

created. Based on how the resource is used, we then apply one of

three repair templates. Since the decision tree covers all the five

escape types, it exhaustively covers all the ways a single resource

can leak. Let us now examine each decision-tree node in detail.

Field-Escape. Resources with a Field Escape are infeasible to fix.

Closing a resource that escapes to an instance field, like in the

example from Fig. 4, is at least as hard as compile-time object

deallocation. Closing a resource that escapes to a static field is not

possible becuase static fields are alive throughout the program’s life.

Furthermore, in cases where we don’t have access to all the code at

compile time (such as when designing a library), it is impossible to

statically even identify all uses of a field; in this case, a Field-Escape
will never be safe to close.
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Resource is defined in a try-catch
block, and all its uses (and aliases)

are contained in the same block

Resource has a post-dominator

If the resource is not defined in a try-
catch block

Paramter ∈ escTypes

Return ∈ escTypes

Data-Structure ∈ escTypes OR
Field ∈ escTypes

No

No

No

No

No

Infeasible to Fix
Yes

Yes Create dummy
warning at the callers'

returned variables

[Resource either has an Invoke escape or no
escape. It can be closed in this method itself.] 

[Resource (or alias) uses are partly inside a
try-catch block and partly outside]

Yes

No Infeasible to Fix

Create dummy
warning at the callers'

argument

Yes

Apply the 'Throws
Template'

Apply the 'Contained
Try-Catch Template'

Apply the 'Escaped
Try-Catch Template'

Yes

Yes

Figure 9: Decision-tree depicting how RLFixer decides which
leaks are infeasible to fix, and picks the correct repair tem-
plate to apply.

Data-Structure-Escape. Fixing Data-Structure-Escapes is hard be-

cause it is well-known that unbounded data structures such as ar-

rays are hard to accurately model using static analysis [25]. Hence,

static analysis tools model data structures using over-approximation.
In the case of an array, the over-approximation is to assume that

a read or write to the array could affect any possible index. Such

an over-approximation is safe for resource-leak detection because

it will never miss out on a leak that occurs in a possible execution.

However, it is unsafe for our repair problem because closing a re-

source from an array requires us to know the exact index that the

resource is at. A similar argument applies to other data-structures.

Hence, RLFixer does not generate any repairs for this case.

Return Escape. At the 𝑅𝑒𝑡𝑢𝑟𝑛 ∈ 𝑒𝑠𝑐𝑇𝑦𝑝𝑒𝑠 node of the decision

tree, we already know that the resource does not escape to a field or

data-structure. If the resource does escape via a Return, we create
one dummy warning for each caller at the returned variable. For

example, in the snippet (Resource r = getRes()), a resource

object gets returned by the getRes method and hence is still alive

after the getRes method returns. Consequently, we cannot close

the resource inside the getRes method. Instead, we create dummy

leak warning at the returned variable (r in this case). We then

recursively apply RLFixer to the dummy warning(s), and suggest

their repairs as a fix for the original warning.

Parameter Escape. The Parameter Escape case is similar to the

Return Escape case, where we create a dummy warning at the caller

methods. The only difference is that the dummy warning is created

at the corresponding argument of the paramter in the caller. We

already saw this strategy being applied to the example in Fig. 2. The

resource leak was reported at the new Buffered Reader in the bar
method of Fig. 2 (line 10). The Buffered Reader resource escapes to

the parameter via its resource alias (FileReader f ). Hence, we create
a dummy warning for the argument fr at the method call to bar in
the caller method foo (line 4). We then recursively apply RLFixer
on the dummy warning(s), and suggest their repairs as a fix for the

original warning.

Invoke Escape and Non-escape. At the decision tree node where

we have neither a Data-Structure, Field, Return or Parameter escape,
we are left with resource-leaks that either have an Invoke Escape or
no escape types. In these two cases, the resource is not used after

the method completes, and hence should closed in the same method.

Based on whether the resource is defined inside a try-catch block

or not, we define three repair templates: the Throws Template, the
Contained Try-Catch Template, and the Escaped Try-Catch Template.
Fig. 10 illustrates these templates. The lines highlighted in green

give the fix suggested by RLFixer.
The Throws Template (see Fig. 10a) applies when the resource

is not created or used within a try-block. The repaired code places

all the resource (and alias) uses within a try-finally block. The try
block starts at the first line where the resource is used. The finally
block starts after the last line where the resource is used, but with

adjustments to match the scope of the newly added try-block. Note

that the new close statement is placed within its own try-catch

block to handle any exception (related to resource access, null-

pointers, etc.) it may throw, thereby avoiding modifying the control

flow of the original program. Modifying the control flow of the

original program modifies its semantics, and this goes against our

repair specification. We will see the same pattern with the next two

templates.

The Contained Try-Catch Template (see Fig. 10b) is applied when
the resource creation and all its uses (and resource aliases) are

contained within a try block. In this case, the correct repair is to

attach a corresponding finally block that closes the resource. If a

finally block is already present, RLFixer adds the close statement to

the existing finally block. The finally block in Java always executes

after the try-catch block, even if the try block has a return statement

or an exception. Hence, with this fix, the resource is closed on all

program paths, including ones involving an exception.

The Escaped Try-Catch Template (see Fig. 10c) applies when

resource creation and use statements (and resource aliases) are

partly inside a try block and partly outside. For example, the use on

line 5 is inside, whereas the one on line 8 is outside. Here, RLFixer
first places all statements that are outside a try block (e.g. line 8)

in a new try-catch block; this prevents control from escaping the

method bar before the resource can be closed. Note that RLFixer
re-throws the exception in the fix code to preserve control-flow

to any exception handler in the caller method of bar. Finally, the
resource needs to be closed at its earliest post-dominator. A post-
dominator for a resource is an instruction in themethod that appears

on every control-flow path from a resource use to the end of the
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1 void foo ( ) throws Excep t i on {

2 Resource r = null ;
+ try {

3 r = new Resource ( . . ) ;

4 r . u seResource ( ) ;

+ } f ina l l y {

+ try { r . c l o s e ( ) ; }

+ catch ( Excep t i on e ) {

+ e . p r i n t S t a c kT r a c e ( ) ;

+ }

+ }

5 }

(a) Throws Template

1 Resource r = null ;
2 try {

3 r = new Resource ( . . ) ;

4 r . u seResource ( ) ;

5 } catch ( IOExcep t i on e ) {

6 e . p r i n t S t a c kT r a c e ( ) ;

7 }

+ f ina l l y {

+ try { r . c l o s e ( ) ; }

+ catch ( Excep t i on e ) {

+ e . p r i n t S t a c kT r a c e ( ) ;

+ }

+ }

8 / ∗ No R e s o u r c e u s e a f t e r t h i s ∗ /

(b) Contained Try-catch Template

1 void bar ( ) throws Excep t i on {

2 Resource r = null ;
3 try {

4 r = new Resource ( . . ) ;

5 r . u seResource ( ) ;

6 } catch ( Excep t i on e ) { }

7 / ∗ Some c od e i n be tween ∗ /
+ try {

8 r . u seResource ( ) ;

+ } catch ( Excep t i on e ) {

+ try { r . c l o s e ( ) ; }

+ catch ( Excep t i on f ) { }

+ throw e ;

+ }

9 / ∗ Some c od e i n be tween ∗ /
10 / ∗ No R e s o u r c e u s e a f t e r t h i s ∗ /

+ try {

+ r . c l o s e ( ) ;

+ } catch ( Excep t i on E ) {

+ e . p r i n t S t a c kT r a c e ( ) ;

+ }

11 }

(c) Escaped Try-Catch Template

Figure 10: RLFixer’s Repair Templates

method. In Fig. 10c, assuming the earliest post-dominator for the

resource is on line 10, RLFixer closes the resource at this point. If
the earliest post-dominator is inside a try-catch block, the close

statement goes inside a finally block. Choosing the earliest post-

dominator for closing the resource is always safe, but in corner

cases with a method having multiple exit points, a resource may

have no post-dominator; RLFixer does not suggest any fix in this

corner case.

We avoid Java’s try-with-resources statement because it only

applies to resources that implement the AutoCloseable interface.
Additionally, it supresses exceptions in the try-with statement in

some cases, thereby modifying the control flow. Futhermore, it

cannot handle the resource usage pattern from the Escaped Try-

Catch Template.

Loops and Existing Close Statements
There are two more details we need to handle in the repair code:

loops and existing close statements.

Dealing with Loops. We can divide the resource-leaks in loops

into two sub-cases. The first, more common sub-case, occurs when

the resource is created during a loop iteration and is never used

after the end of that iteration. RLFixer deals with this sub-case by

extracting the loop-body and computing the fix on this loop-body

as it would for any loop-free resource leak. For the very rare sub-

case where a resource created in a loop stays alive beyond the end

of a loop iteration, RLFixer does not suggest a fix; this sub-case

gives an undecidable problem.
1

Deleting Existing Close Statements. In addition to adding repair

code, RLFixer also needs to remove unnecessary close statements

added by the programmer to avoid a double close. We design each

1
Fixing the leak in this rare sub-case requires us to identify the last loop iteration (to

close the leak), which is a known hard problem for compilers.

of our repair-templates to require a single close statement; hence,

RLFixer deletes any existing close statements that were added by

the programmer. For example, in Fig. 10b, if the programmer had

inserted a close statement inside the try block after line 4, RLFixer
would need to delete it (in addition to generating new repair code).

4 IMPLEMENTATION
This section discusses the implementation details for RLFixer. RL-
Fixer is primarily implemented in the WALA static analysis frame-

work for Java bytecode [2]. We wrote RLFixer’s analyses onWALA’s

IR instead of Java’s source AST because the IR has simpler control

flow, fewer instruction types, and is already in SSA form. Further-

more, WALA automatically sets up the core information needed

by any static analysis, such as computing the class-hierarchy, call-

graph (using the 0-CFA algorithm) and basic-blocks. The Repair-

Template stage of RLFixer additionally uses JavaParser [4] to scan

the Java source ASTs for scoping and line number information.

The resource-escape analysis, call-graph, and resource-alias anal-

ysis all use a context-insensitive analysis. Context-sensitivity is not

needed because we know of no way to represent context in repair

code. Our analyses automatically get partial flow-sensitivity be-

cause of the WALA IR’s SSA form. Field-sensitivity is redundant

because all resources aliasing fields become Field Escapes and do not
get fixed. Reflection support can trivially be added by turning on

WALA’s reflection analysis, but we skip this option; it only benefits

a tiny fraction of repairs, while increasing call-graph computation

time by many fold. In our experiments, out of the 150 resource-leaks

that were manually examined, none were affected by reflection.

The output format of the tool is much like that in Fig. 2, and can

easily be incorporated into an IDE or existing static analysis tool.

Note that RLFixer does not automatically adjust variable scopes in

its generated fix; it is up to the programmer to correct this.
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Figure 11: Warnings reported by the five resource-leak ana-
lyzers when applied to the NJR dataset.

5 DATASET
Weuse the NJR-1 dataset (available here [58]), as our benchmark-set.

It consists of a diverse set of 293 Java-8 programs from GitHub, and

has been used in several recent static analysis papers such as [36,

59, 60]. It is well-suited to evaluate RLFixer because it has several
resource leaks, and runs off-the-shelf with several existing resource-

leak detectors and Java analysis tools like WALA and JavaParser.

We leave out 6 of the 293 NJR-1 benchmarks; Footpatch runs out

of memory for three benchmarks, and three are missing a library

class. This leaves us with 287 benchmarks for our experiments.

We run five popular Java resource-leak detectors on this dataset:

Infer [14], PMD [1], Checker-Framework [32] (shortened to CF),

Codeguru [5], and Spotbugs [3]. The warnings given by these tools

are then fed to RLFixer. We ran all the tools with their default op-

tions, and after post-processing the warnings to filter out duplicate

warnings, etc., we got a total of 2205 unique resource-leaks. During

the duplicate filtering, if there are two warnings for a resource-alias

pair (i.e. same root cause), one gets removed. Fig. 11 lists the num-

ber of warnings given by each tool after duplicate filtering. CF gets

the most resource-leaks, probably because of its commitment to

soundness (i.e. catching as many possible leaks). Spotbugs gets the

fewest resource-leaks, probably because soundness was traded off

for speed. Similarly, the other tools differ in their set of reported

leaks because of different design decisions.

Fig. 12 reports some statistics about the frequency of resource

leaks in the NJR dataset. 207 out of 287 programs have at least one

leak. By taking a union of the resource leaks by the five tools, we

get an estimated total of 2205 unique resource leak warnings. This

averages to 8 resource leaks per program. Given that the average

number of lines of application code in the NJR dataset is almost

10k, we can expect one resource leak in every 1300 lines of code.

Thus, resource leaks are prevalent in the dataset; developers need

better tool-support for fixing these leaks.

6 EXPERIMENTAL RESULTS
In this section, we discuss our experimental results which answer

the following four research questions:

(1) RQ1: How many warnings can RLFixer suggest fixes for?

(2) RQ2: How many of RLFixer’s suggested fixes are correct?

(3) RQ3: How does RLFixer compare to Footpatch?

Tool Output
Total number of programs: 287

Programs with at least one resource leak: 207

Estimated number of unique resource leaks (across

the five tools)

2205

Lines of application code per benchmark 9911

Figure 12: Statistics about the frequency of resource leaks in
the NJR dataset

(4) RQ4: How long does RLFixer take to generate repairs?

The four questions are answered by the following four claims,

which are in turn validated in the next four subsections (all numbers

are averages across the five resource leak detectors).

(1) RLFixer suggests fixes for 66% of the resource-leak warnings.

(2) 95% of the fixes suggested by RLFixer are correct.

(3) RLfixer produces higher quality fixes than Footpatch.

(4) RLFixer takes, on average, 1 seconds per program, excluding

the 13-second WALA setup time.

The experiments were carried out on a machine with 24 Intel(R)

Xeon(R) Silver 4116 CPU cores at 2.10GHz and 188 GB RAM. For

the JVM, the default heap size of 32GB, and default stack size of

1MB, was used.

6.1 RQ1: Fixable Rate
Fixable Rate is the percentage of warnings for which a fix was

suggested. It is defined as:

Fixable Rate =
# warnings for which a fix was suggested

total # warnings

Fig. 13 gives a split up of the fixable and unfixable resource-leaks

for RLFixer on each of the five tools. On average, RLFixer gets a
66% fixable rate, with PMD getting the highest fixable-rate (75%).

The unfixable resource-leaks are further split based on the reason

they are not fixed: From the graph, we see that the main reason

for unfixed leaks are Field Escapes (20%). CF gets a lower fixable-

rate than the other tools because of a large percentage of its leaks

being Field Escapes. A smaller contributor to unfixed leaks are Data-
Structure Escapes (9%). Some 1% of resource leaks escape to both, a

data-structure and a field. We report these as data-structure escapes

to simplify the graph. The last 5% of leaks are not fixed (in red color)

because, as discussed in Section 3.4, there are corner cases for some

templates that result in undecidable problems.

6.2 RQ2: Fix Correctness
Another important metric is Fix Correctness, the percentage of cor-
rect fixes out of the suggested fixes. It is defined as:

Fix Correctness =
# warnings with a correct fix suggestion

# warnings with a fix suggestion

We picked a sample of 150 fixes (30 per resource-leak detector)

suggested by RLFixer to estimate the fix-correctness. We re-ran

the resource-leak detector on the fixed code to ensure that the

old leaks disappeared. For 2 fixes, the old leaks remained, and
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Percentage of Resource-Leaks (%)

Infer

PMD

CF

Codeguru

Spotbugs

Average

0 25 50 75 100

Fixable rate Unfixed because of Data-Structure Escape
Unfixed because of Field Escape Unfixed for other reasons

Figure 13: Fixable-rate for RLFixer for each resource-leak
detector, along with reasons for the unfixed leaks.

these were marked as incorrect. For the remaining fixes, we had

5 volunteer programmers classify the fixes as correct or incorrect.

The volunteers, none of whom are authors, are computer-science

graduate students who are familiar with Java and resource leaks.

The volunteers classify different subsets of the fixes, but each fix is

classified by at least 3 volunteers. Each volunteer uses the following

criteria to evaluate correctness, and a fix is considered incorrect

even if one of these criteria is not met.

(1) The fix repairs the leak.

(2) The fix does not introduce a null-pointer error.

(3) The fix does not introduce a use-after-close error (e.g. file

written after being closed).

(4) The fix does not introduce a double close.

(5) The fix does not modify the behavior of the program.

Finally, we computed the fix-correctness by taking an average

over the scores of the volunteers. The inter-rater agreement, calcu-

lated using Krippendorff’s Alpha, is 0.86. The scores for each tool

are shown in Fig. 14. On average, RLFixer’s fix-correctness is 95%,
with Infer and Codeguru getting near perfect fixes. Given that less

than one in twenty fixes by RLFixer are incorrect, we can put high

confidence in its generated repairs.

Examining the small fraction of incorrect fixes shows that there

are twomajor roadblocks to RLFixer reaching perfect fix-correctness.
The first is that the definition for resource-alias analysis works well
in most cases, but it does not exhaustively capture all the ways that

two Java objects can share a resource. Missed resource-aliases in

turn give incorrect fixes. Designing a perfect resource-alias anal-

ysis is hard. The second roadblock is that RLFixer’s templates are

designed to fix individual resource-leaks, and hence do not work

perfectly when multiple resource-leaks occur in the same code

block.

Another correctness issue that most repair-tools need to deal

with is false-positive warnings, and whether one suggests repairs

for these false warnings; this, however, does not seem to be an issue

in practice for RLFixer. To get a measure of false-positive warn-

ings, we asked the volunteers to also examine the same 150 repairs

and decide whether the original leak-detector warning was a false

positive. All five resource-leak detectors gave zero false-positive
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Figure 14: Percentage of correct fixes by RLFixer (i.e. fix-
correctness) for the five resource-leak detectors

warnings for the leaks fixed by RLFixer. This low false-positive rate

is expected, since these are all mature tools that have been heavily

engineered to weed out false-positive warnings. Note that there

could still be false-positive warnings among the infeasible-to-fix

leaks, but this doesn’t affect RLFixer.

6.3 RQ3: Comparison with Footpatch
Fig. 15 summarizes the comparison between Footpatch and RLFixer.
We only use the Infer warnings for the comparison because Foot-

patch is tightly integrated with Infer; it cannot be used with other

resource-leak detectors. We split the results into two parts: the first

part (columns 2 and 3) shows the results on the warnings from the

NJR benchmarks, and the second part (columns 4 and 5) gives the

results on the apktool benchmark from the Footpatch paper [61].

For the NJR benchmarks, Infer generates 730 warnings, for which

Footpatch generates 46 fixes, giving us a 6% fixable-rate. The fixable-

rate for RLFixer (65%) on NJR is the same as the Infer entry in Fig. 13.

For the NJR fix-correctness, we chose a random sample of 30 fixes

for each tool, and evaluated for correctness using the criteria from

Section 6.2. Out of the sample of 30 Footpatch fixes, 8 were correct,

giving a 27% fix-correctness. RLFixer’s fix-correctness (99%) is the
same as the entry for Infer in Fig. 14. Thus, on the NJR benchmarks

RLFixer performs significantly better on both, fixable-rate and fix-

correctness.

For apktool, the only benchmark from the Footpatch paper [61]

with Java resource leaks, Infer gives 19 warnings. Out of these 6

are duplicates and we remove them. For the remaining 13 warn-

ings, Footpatch attempts a fix for 1 warning (fixable-rate 8%), and

RLFixer attempts a fix for 12 warnings (fixable-rate of 92%). Both

tools produce only correct fixes for this benchmark (fix-correctness

100%).

The large gap in fix-quality between Footpatch and RLFixer is
expected; Footpatch is a more general purpose tool that works with

multiple kinds of errors, as well as on both C and Java. RLFixer, on
the other hand, is specialized for resource-leaks in Java, and hence

is able to vastly outperform Footpatch on this task.
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NJR benchmarks apktool
Tool Fixable

Rate
Fix Cor-
rectness

Fixable
Rate

Fix Cor-
rectness

Footpatch 6% 27% 8% 100%

RLFixer 65% 99% 92% 100%

Figure 15: Comparing the repair quality of RLFixer and the
Footpatch baseline when fixing the Infer warnings. We show
the results separately for the NJR benchmarks and apktool.

Tool Leak detector Overall fix time
time (s) WALA setup

time (s)
RLFixer
time (s)

Infer 42 13 1

PMD 6 12 1

Spotbugs 13 13 1

CF 63 12 1

Average 31 13 1

Figure 16: Split up of the time taken per program by RLFixer
and the resource-leak detectors

6.4 RQ4: Repair Time
Fig. 16 shows the time taken per program by RLFixer and four of the
resource-leak detectors. We do not report the time for Codeguru

because it is only accessible via a web service. On average, resource-

leak detection takes 31 seconds per program, but this varies widely

across the four detectors. PMD and Spotbugs are very fast, whereas

Infer and CF take much longer. The overall repair time is 14 seconds

per program. A majority of this time (13 seconds) is taken by the

WALA setup, whereas RLFixer, as described in Section 3, takes just

1 second per program because of its demand-driven design. Its fix

time per leak is even lesser. The WALA setup includes tasks like

constructing the class-hierarchy, call-graph, basic-blocks, etc., but

a majority of the time is taken for call-graph construction.

Call-graph construction is unavoidable for any inter-procedural

analysis, but we could eliminate this component by integrating

RLFixer with a WALA based resource-leak detector. Since RLFixer
is implemented in the WALA framework, such a design allows

RLFixer to reuse the WALA setup information from the resource-

leak detector phase. This could bring the total fix time down to just

1 second.

A direct comparison of repair times with Footpatch is not mean-

ingful because Footpatch suggests very few fixes, and it is hard to

factor out the time taken by unsuccessful fix attempts and fixes

for other kinds of bugs. However, results from the Footpatch paper

show that it takes several minutes per Java program, which is at

least an order of magnitude larger than RLFixer. There are two

reasons why RLFixer is faster: it is demand-driven, and unlike other

Footpatch, it does not need to perform a search over possible repair

codes; it constructs fixes from repair templates.

6.5 Threats to Validity
The first threat to validity is that the human volunteers who par-

ticipated in the experiment presented in Section 6.2 could make

mistakes in their evaluation of the fixes. We mitigate this threat by

averaging scores over multiple volunteers and and a large number

of leaks (150 in total) from different tools. Furthermore, we also

re-ran the resource-leak detectors on the fixed code to confirm that

the resource-leak warning disappeared.

The second threat is that our evaluation was carried out on Java-

8 programs from the NJR-1 dataset. The assumption is that our

results will generalize to other Java benchmarks.

The third threat is the applicability of RLFixer’s approach to

other langauges and platforms, since RLFixer’s design and our

experiments only focus on Java code.

7 RELATEDWORK
The research direction closest to this work is automated program

repair, and one can split this category into general-purpose, special-

purpose, and linter-based repair tools. More distantly related are

escape analysis and repairing Android resource leaks. We discuss

each of these in turn.

General-purpose repair tools. General-purpose repair tools aim
to fix a wide-variety of program errors. Most of these tools are

test-based techniques, and can be split into three paradigms. The

first paradigm, generate-and-validate [28, 33, 45, 46, 62], generates

candidate patches by searching through existing patches and code.

The second is the deep-learning based paradigm [22, 29, 39, 40,

65, 67] that uses deep-learning to find patches, often by applying

Neural Machine Translation models from NLP. The third semantics-

based paradigm [8, 34, 35, 49, 51] generates patches by casting the

repair problem as a constraint satisfaction problem. Ultimately, all

three paradigms validate each patch by checking if it passes the

previously failing test case. These paradigms cannot be applied to

resource-leaks because resource-leaks do not cause test-failures.

Footpatch [61] is the only general-purpose tool which can be

applied to resource-leaks because it relies on the Infer static anal-

ysis tool instead of tests to verify the fix. It generates patches by

searching the same code-base for program fragments that address

the given bug class. It is semi-specialized to heap errors including

null-pointer errors, resource leaks, etc. However, Footpatch has

three shortcomings, compared to RLFixer. Firstly, RLFixer has an
order-of-magnitude better fixable-rate and fix-correctness (see Sec-

tion 6.3). Footpatch pays for its generality with a lower fix quality.

Secondly, RLFixer’s repair templates, by design, do not modify the

semantics of the program or introduce any new errors. On the other

hand, Footpatch’s notion of correctness is limited to re-running

Infer to ensure the leak disappreas. This does not ensure that the

semantics of the program are unmodified and no new errors are

introduced. Thirdly, RLFixer is also much faster; it takes seconds

instead of minutes or hours.

Special-purpose repair tools. Special-purpose repair tools, as op-
posed to general-purpose tools, focus on repairing a single kind

of error; this enables them to produce much higher quality fixes.

Most of these tools report fixable-rates of 40-70% and a high fix-

correctness, which is very similar to what we see with RLFixer,
and this is usually significantly higher than what general-purpose

tools can achieve. The kind of errors tackled by special-purpose

tools include null-pointer errors [38, 66], integer overflows [16, 50],
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buffer overflows [55], concurrency errors [7, 30, 41], performance

bugs [54], and memory leaks [23, 27, 37].

Among the existing special-purpose repair tools, memory-leak

fixing [23, 27, 37] is the closest to RLFixer because it has a simi-

lar specification: repair the leak without modifying the program’s

semantics. However, these tools focus on C programs, and memory-

leaks present different challenges than resource-leaks. For exam-

ple, features such as Java’s exception mechanism, its reliance on

try-catch blocks for resource handling, resource aliasing, and the

presence of class fields are some challenges in Java resource-leak

fixing that do not appear when dealing with memory leaks in C.

Unlike all these specialized repair tools, RLFixer focuses on

resource-leaks, a problem that has not been tackled by any spe-

cialized tool before. Additionally, RLFixer’s demand-driven design

makes it significantly faster than most special-purpose tools. Most

other tools use time-budgets of a few minutes or more per program,

whereas RLFixer finishes in 1 second, plus the 13 seconds it takes

for WALA to setup the call-graph, etc.

Linter-based repair tools. Linters scan code for style or coding-

convention violations using pattern matching on the AST (Abstract

Syntax Tree). Linter-based repair tools [11, 21, 47, 48] use a simi-

lar AST pattern-matching approach to apply repairs for a linter’s

warnings. These tools vary in the coding-conventions they target,

and in their method of learning repair patterns. Phoenix [11] mines

patches from a corpus of GitHub programs, and uses it to learn

generalized repair strategies that are represented as executable pro-

grams in a domain specific language (DSL). Styler [47] similarly

learns fix patterns for code-formatting violations from a corpus, but

it learns using an LSTM neural network. Getafix [9] applies a hier-

archical clustering algorithm to effectively summarize fix patterns,

and then uses a novel ranking technique based on past human fixes

to pick the most plausible fix. TFix [12] formulates the linter-repair

problem as a text-to-text prediction task and then uses a pre-trained

text-to-text Transformer model to generate fixes. SpongeBugs [48]

and Sorald [21] create manually defined fix templates for a handful

of linter violations.

The errors targetted by linter-based repair tools are often lo-

cal and can be represented using AST patterns. Hence, unlike RL-
Fixer, their techniques will not work for a more complex bug such

as resource-leaks which requires data-flow tracking and an inter-

procedural analysis.

Escape analysis. Escape analysis [18, 63] is a research direction

that sounds similar to our resource escape analysis from Section 3.3,

but it has very different designs and goals. Escape analysis charac-

terizes how objects allocated in one region of the program escape to

code outside this region. It cares less about the kind of program con-

struct (such as an array or field) it escapes to. On the other hand, our

resource escape analysis computes the kinds of program constructs

(such as a field or parameter) that a resource aliases with, and has no

concept of regions. Hence, the two analyses end up having different

abstract domains, constraints, and design decisions.

Repairing Android Resource Leaks. Android Resource Leaks are
leaks involving event-driven control flow from Android events, and

are different from the Java resource leaks discussed in this paper,

which involve sequential control flow. Let us take a closer look at

how these two kinds of leaks differ to understand why they need

different kinds of repair tools. An Android application is an event-

driven system with event-handlers responding to a sequence of

events such as user-interaction or the application life-cycle events.

For example, Android defines the event handlers onPause and

onDestroy for when the user pauses and closes an application,

respectively. Android Resource Leak detectors [44, 64] model these

event sequences and find ones that can leak some Android resource.

For example, if a resource is not closed in the onPause or onDestroy
event handlers, we may get an Android Resource Leak. Liu et. al [43]

prepare a database of such Android Resource Leaks. Android Resource
Leak repair tools such as [10, 13, 42] then suggest the correct event-

handler to close the resource in. Hence, all these leak detection

and repair tools for Android Resource Leaks focus exclusively on

Android’s event-driven control flow. On the other hand, tools such

as RLFixer and Footpatch [61] focus on Java resource leaks resulting
from the control-flow in sequential Java code. Thus, they solve a

completely different problem than Android Resource Leak repair

tools.

8 CONCLUSION
Resource leaks are an important bug type that need better tool-

support for automated fix suggestions. In this paper, we introduced

RLFixer, the first specialized repair tool for resource leaks. We high-

lighted several challenges for the resource leak problem, including

identifying resource-leaks that are infeasible to solve, identifying

resource aliases, and constructing fixes that do not modify the se-

mantics of the existing program. We then discussed how RLFixer
tackles these challenges using a new demand-driven static analysis

called resource escape analysis. Finally, we experimentally showed

that RLFixer repairs a majority of resource-leaks in our benchmarks

with near perfect correctness and very low repair time.

There are two interesting future directions that we forsee. The

first is to investigate if there are any special cases of field or data-

structure escapes that are feasible to fix. The second is applying

RLFixer’s templates and resource alias analysis to other object

oriented languages like Python or C#, which have a similar try-

catch-finally exception handling style.

9 DATA AVAILABILITY AND EXPERIMENT
REPLICATION

The dataset used for this paper, NJR-1, is publicly available at

the following link: (https://doi.org/10.5281/zenodo.3897691). The

anonymized artifact for the paper, including the source code, experi-

mental results, and detailed documentation, are publicly available at

the following repository: (https://doi.org/10.5281/zenodo.7592371).

The artifact also includes a VM image that comes with pre-installed

dependencies, and can be used to quickly reproduce the results of

the paper by running a few simple scripts.
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